Impact of substrate surface scratches on the laser damage resistance of multilayer coatings

نویسندگان

  • S. Roger Qiu
  • Justin E. Wolfe
  • Anthony M. Monterrosa
  • William A. Steele
  • Nick E. Teslich
  • Michael D. Feit
  • Thomas V. Pistor
  • Christopher J. Stolz
چکیده

Substrate scratches can limit the laser resistance of multilayer mirror coatings on high-peak-power laser systems. To date, the mechanism by which substrate surface defects affect the performance of coating layers under high power laser irradiation is not well defined. In this study, we combine experimental approaches with theoretical simulations to delineate the correlation between laser damage resistance of coating layers and the physical properties of the substrate surface defects including scratches. A focused ion beam technique is used to reveal the morphological evolution of coating layers on surface scratches. Preliminary results show that coating layers initially follow the trench morphology on the substrate surface, and as the thickness increases, gradually overcoat voids and planarize the surface. Simulations of the electrical-field distribution of the defective layers using the finite-difference timedomain (FDTD) method show that field intensification exists mostly near the top surface region of the coating near convex focusing structures. The light intensification could be responsible for the reduced damage threshold. Damage testing under 1064 nm, 3 ns laser irradiation over coating layers on substrates with designed scratches show that damage probability and threshold of the multilayer depend on substrate scratch density and width. Our preliminary results show that damage occurs on the region of the coating where substrate scratches reside and etching of the substrate before coating does not seem to improve the laser damage resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of substrate pits on laser-induced damage performance of 1064-nm high-reflective coatings.

The laser damage resistance of coatings in high-power laser systems depends significantly on the surface quality of the substrate. In our experiment, pits were precisely fabricated on the surface of fused silica substrate using a femtosecond laser processing bench. The HfO2/SiO2 high-reflective coatings at 1064 nm were deposited by conventional e-beam evaporation onto fuse...

متن کامل

A review on the prevalent fabrication methods, microstructural, mechanical properties, and corrosion resistance of nanostructured hydroxyapatite containing bilayer and multilayer coatings used in biomedical applications

Surface treatments of the biomaterials are of great interest in many biomedical applications. Hydroxyapatite is a favorable candidate for surface modification of the implants. To date, a wide variety of methods have been developed to produce bio-active/biocompatible coatings with desirable features in order to improve the performance of the implants. This paper strives to overview the present p...

متن کامل

Multilayer deformation planarization by substrate pit suturing.

In the pursuit of 1064 nm high-power laser resistance dielectric coatings in the nanosecond region, a group of HfO2/SiO2 high reflectors with and without suture layers were prepared on prearranged fused silica substrates with femtosecond laser pits. Surface morphology, global coating stress, and high-resolution cross sections were characterized to determine the effects of ...

متن کامل

Laser-resistance sensitivity to substrate pit size of multilayer coatings

Nanosecond laser-resistance to dielectric multilayer coatings on substrate pits was examined with respect to the electric-field (E-field) enhancement and mechanical properties. The laser-induced damage sensitivity to the shape of the substrate pits has not been directly investigated through experiments, thus preventing clear understanding of the damage mechanism of substrate pits. We performed ...

متن کامل

Experimental demonstration of laser damage caused by interface coupling effects of substrate surface and coating layers.

The laser damage resistance of the coatings for high-power laser systems depends greatly on the surface quality of the substrate. In our work, experimental approaches were employed to understand the interface coupling effect of the substrate surface and coatings on the laser resistance of the coatings. A 1064 nm anti-reflection (AR) coating was deposited by an e-beam coater onto fused silica wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010